
Iniciação à investigação científica

Henrique Madeira

University of Coimbra, Portugal

Ideias (aparentemente) absurdas e outras
histórias de investigação científica

O que eu queria mesmo falar:
injecção de falhas de software

Henrique Madeira Research@FCTUC, Novembro 2006 2

“Um cientista descobre o que existe.
Um engenheiro cria o que nunca existiu.”

The research “business”
(my personal view)

• Identification of research problems (the key issue)
• Relevance of the research
• New/different is not enough
• Proving/showing that your proposal is better.
• The research approach (the experimental view)
• The Pygmalion effect
• Convincing other researchers and the world (getting

papers accepted)

Henrique Madeira Research@FCTUC, Novembro 2006 3

Network

Application
databases

Web objects
storage

HTTP
servers

Application
server

Server sideClient side

Background: COTS based software
development

Coarse grain COTS:
− Middleware comp.
− Web servers
− DBMS
− OS

Fine grain COTS:
− Some middleware

comp.
− User interface small

components.
− Libs.
− Etc.

Trend → use general-purpose COTS components and
develop domain specific components and glue code.

Henrique Madeira Research@FCTUC, Novembro 2006 4

Research problem

Software components

Different sizes

Different levels of granularity

Henrique Madeira Research@FCTUC, Novembro 2006 5

Research problem
This is a COTS!

What’s the risk of
using it in my system?

Henrique Madeira Research@FCTUC, Novembro 2006 6

Research starting idea

Risk = prob. of bug * impact of bug activation

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Question:
What’s the risk of using Component 3 in my system?

Software complexity
metrics

Injection of
software faults

Henrique Madeira Research@FCTUC, Novembro 2006 7

Research problem
(focusing the problem)

• How to inject realistic and representative software faults
(bugs)

– Which faults are realistic?
– Which ones are the most representative?

• Goals:
Design the first software fault injector
Define practical methods/techniques for the evaluation of
systems behavior in presence of faulty software
components
Propose an experimental approach to estimate risk of
using software.

Henrique Madeira Research@FCTUC, Novembro 2006 8

What is a software fault?
(narrowing the problem)

Software development process (in theory...)

Requirements
Specification

Design
Code development

Test
Deployment

Correctness
from the end
user point of
view: too vague

OK
OK

The requirements + specification
are correct but the deployed code is not

Henrique Madeira Research@FCTUC, Novembro 2006 9

Characterization of software faults
(using previous work from IBM)

A SW fault is characterized by the change in the code that is
necessary to correct it (Orthogonal Defect Classification from IBM).

Defined according two parameters:

Fault trigger conditions that make the fault to be exposed

Fault type type of mistake in the code

Henrique Madeira Research@FCTUC, Novembro 2006 10

Types of software faults (ODC)

• Assignment values assigned incorrectly or not assigned

• Checking missing or incorrect validation of data, or incorrect
loop, or incorrect conditional statement

• Timing/serialization missing or incorrect serialization of
shared resources

• Algorithm incorrect or missing implementation that can be fixed without
the need of design change

• Function incorrect or missing implementation that requires a
design change to be corrected

Henrique Madeira Research@FCTUC, Novembro 2006 11

Which are the most representative
software faults?

• Field data on real software errors is the most reliable
information source on which faults should be injected

• Typically, this information is not made public

• Open source projects provide information on past
(discovered) software faults

Henrique Madeira Research@FCTUC, Novembro 2006 12

Open source field data survey
Programs Description # faults

CDEX CD Digital audio data extractor. 11

Vim Improved version of the UNIX vi editor. 249

FreeCiv Multiplayer strategy game. 53

pdf2h pdf to html format translator. 20

GAIM All-in-one multi-protocol IM client. 23

Joe Text editor similar to Wordstar® 78

ZSNES SNES/Super Famicom emulator for x86. 3

Bash GNU Project's Bourne Again SHell. 2
LKernel Linux kernels 2.0.39 and 2.2.22 93

Total faults collected 532

Henrique Madeira Research@FCTUC, Novembro 2006 13

Characterization of software faults through
an additional step over ODC

Hypothesis:
Faults are considered as programming elements (language
constructs) that are either:

• Missing
E.g. Missing part of a logical expression

• Wrong
E.g. Wrong value used in assignment

• Extraneous
E.g. Surplus condition in a test

Henrique Madeira Research@FCTUC, Novembro 2006 14

Fault characterization on top of ODC
ODC types Nature Examples

Missing A variable was not assigned a value, a variable was not initialized, etc

Wrong A wrong value (or expression result, etc) was assigned to a variable

Extraneous A variable should not have been subject of an assignment

Missing An "if" construct is missing, part of a logical condition is missing, etc

Wrong Wrong "if" condition, wrong iteration condition, etc

Extraneous An "if" condition is superfluous and should not be present

Missing A parameter in a function call was missing

Wrong Wrong information was passed to a function call (value, expression result etc)

Extraneous Surplus data is passed to a function (one param. too many in function call)

Missing Some part of the algorithm is missing (e.g. function call, a iteration construct)

Wrong Algorithm is wrongly coded or ill-formed

Extraneous The algorithm has surplus steps; A function was being called

Missing New program modules were required

Wrong The code structure has to be redefined to correct functionality

Extraneous Portions of code were completely superfluous
Function

Algorithm

Interface

Checking

Assign

Henrique Madeira Research@FCTUC, Novembro 2006 15

Fault distribution across ODC types

There is a clear trend in fault distribution
Previous research (not open source) confirms this trend
Some faults are more representative (i.e. more interesting) than
others: Assignment, Checking, Algorithm

ODC Type Number of
faults

ODC distribution
(our work)

ODC distribution
(prev. research IBM)

Assignment 118 22.1 %
25.7 %

8.0 %

37.2 %

6.7 %

21.98 %
Checking 137 17.48 %

Interface 43 8.17 %

Algorithm 198 43.41 %

Function 36 8.74 %

Henrique Madeira Research@FCTUC, Novembro 2006 16

Fault nature characterization across ODC

ODC types Nature # faults
Missing 44
Wrong 64
Extraneous 10
Missing 90
Wrong 47
Extraneous 0
Missing 11
Wrong 32
Extraneous 0
Missing 155
Wrong 37
Extraneous 6
Missing 21
Wrong 15
Extraneous 0

Func.

Alg.

Interf.

Check.

Assign.

• Missing and wrong elements are
the most frequent ones

• This trend is consistent across the
ODC types tested

Henrique Madeira Research@FCTUC, Novembro 2006 17

Fault characterization across programs

Fault nature CDEX Vim FCiv Pdf2h GAIM Joe ZSNES Bash LKernel Total

Missing cons. 3 157 35 11 17 34 1 0 63 321
Wrong cons. 8 85 18 9 6 41 2 2 24 195

Extraneous cons 0 7 0 0 0 3 0 0 6 16

1 – Missing constructs faults are the more frequent ones

2 – Extraneous constructs are relatively infrequent

3 – This trend is consistent across the programs tested

Henrique Madeira Research@FCTUC, Novembro 2006 18

Fault nature # Faults ASG CHK INT ALG FUN
Missing variable initialization 12
Missing variable assignment using a value 12
Missing variable assignment using an expression 16
Missing "if (cond)" surrounding statement(s) 23
Missing "AND EXPR" in expression used as branch condition 42
Missing function call 46
Missing "If (cond) { statement(s) }" 53
Missing "if (cond) statement(s) else" before statement(s) 17
Missing small and localized part of the algorithm 17
Missing functionality 21
Wrong value assigned to variable 13
Wrong logical expression used as branch condition 16
Wrong arithmetic expression in param. of func. Call 12
Wrong variable used in parameter of function call 8
Wrong algorithm - large modifications 15
Wrong data types or conversion used 12
Extraneous variable assignment using another variable 8
Total faults for these types in each ODC type 343 73 81 20 133 36
Fault coverage relative to each ODC type (%) 64.5 61.9 59.1 46.5 67.2 100

The most frequent software faults

Henrique Madeira Research@FCTUC, Novembro 2006 19

“Top-N” of software faults
Fault types Description Observed in

field study ODC classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm
MFC Missing function call 8.64 % Algorithm

MLAC
Missing "AND EXPR" in expression used as

branch condition 7.89 % Checking
MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking
MLPC Missing small and localized part of the algorithm 3.19 % Algorithm
MVAE Missing variable assignment using an expression 3.00 % Assignment

WLEC
Wrong logical expression used as branch

condition 3.00 % Checking
WVAV Wrong value assigned to a value 2.44 % Assignment
MVI Missing variable initialization 2.25 % Assignment
MVAV Missing variable assignment using a value 2.25 % Assignment

WAEP
Wrong arithmetic expression used in parameter of

function call 2.25 % Interface
WPFV Wrong variable used in parameter of function call 1.50 % Interface

Total faults coverage 50.69 %

Henrique Madeira Research@FCTUC, Novembro 2006 20

G-SWFIT
Generic software fault injection technique

01011
00010
01001

Target
executable

code

Low-level code
mutation engine

Low level
mutated versions

. . .Library of low level
mutation operators

01X11
00010
01001

01011
0X010
01001

01011
0001X
01001

01011
00010
0X001

Emulate common
programmer mistakes

The technique can be applied to binary files prior to execution or to
in-memory running processes

Henrique Madeira Research@FCTUC, Novembro 2006 21

Fault/operator example 1
Missing and-expression in condition

if (a==3 && b==4)
{
do something

}

if (a==3 && b==4)
{
do something

}

cmp dword ptr off_a[ebp],3
jne short ahead
cmp dword ptr off_b[ebp],4
jne short ahead
; ... do something ...
ahead:
...

; remaining prog. code

cmp dword ptr off_a[ebp],3
jne short ahead
nop
nop
nop
; ... do something ...
ahead:
...
; remaining prog. code

Target source code (avail. not necessary) Code with intended fault

Original target code (executable form) Target code with emulated fault

The actual mutation is performed in executable (binary) code. Assembly
mnemonics are presented here for readability sake

Henrique Madeira Research@FCTUC, Novembro 2006 22

Fault/operator example 2:
Assignment instead equality comparison

if (v1 == v2)
{

...
}

if (v1 = v2)
{

...
}

MOV reg, mem1
CMP reg, mem2
JNE ahead
; ...
ahead:
; ...

MOV reg, mem2
MOV mem1, reg
CMP reg, 0
JE ahead
; ...
ahead:

Target source code (avail. not necessary) Code with intended fault

Original target code (executable form) Target code with emulated fault

Some restrictions are enforced (e.g. it must not be preceded by a function call
pattern to avoid func() = = val becoming func() = val)

This fault is not the most common one, but it illustrates a mutation more complex
than the previous one

Henrique Madeira Research@FCTUC, Novembro 2006 23

Definition of the
low-level mutation operators library

High
level
code

Specially
designed
synthetic

application (SA)

. . .

Low level patterns and
mutations library

Bug reports

Field data
Information to
design of SA

Com
pile

r

Com
pile

r

Com
pile

r

Compiled correct
SA version

Compiled
mutated SA

versionsEducated
mutations

Close inspection
and comparison
of resulting low

level code

Henrique Madeira Research@FCTUC, Novembro 2006 24

Validation of the technique

• Accuracy?
Are the low-level faults actually equivalent to the high-level bugs?

• Generalization and portability

Is the technique dependent on the compiler, optimization settings,
high-level language, processor architecture, etc?

Henrique Madeira Research@FCTUC, Novembro 2006 25

Example of results on accuracy validation:
Missing or bad return statement

LZari Camelot GZip

L
ow

-le
ve

l
H

ig
h-

le
ve

l

Lzari - Low level - Return

Error
0%Erratic

80%

Correct
20%

Timeout
0%

Lzari - High level - Return

Error
0%Erratic

80%

Correct
20%

Timeout
0%

Camelot - Low level - Return

Error
12%

Erratic
61%

Correct
2%

Timeout
25%

Camelot - High level - Return

Error
12%

Erratic
61%

Correct
2%

Timeout
25%

Gzip - Low level - Return

Error
0%

Erratic
33%

Correct
67%

Timeout
0%

Gzip - High level - Return

Error
0%

Erratic
33%

Correct
67%

Timeout
0%

Henrique Madeira Research@FCTUC, Novembro 2006 26

Example of results on accuracy validation:
Assignment instead equality comparison

LZari Camelot GZip

L
ow

-le
ve

l
H

ig
h-

le
ve

l

Lzari - Low level - Assignment

Timeout
18%

Correct
32%

Erratic
42%

Error
8%

Lzari - High level - Assignment

Error
0%

Erratic
34%

Correct
42%

Timeout
24%

Camelot - Low level - Assignment

Error
13%

Erratic
19%

Correct
55%

Timeout
13%

Camelot - High level - Assignment

Error
14%

Erratic
8%

Correct
64%

Timeout
14%

Gzip - Low level - Assignment

Error
6%

Erratic
48%

Correct
41%

Timeout
5%

Gzip - High level - Assignment

Error
7%

Erratic
61%

Correct
26%

Timeout
6%

Henrique Madeira Research@FCTUC, Novembro 2006 27

Generalization of the technique

• Use of different compiler optimization settings

• Use of different compilers (Borland C++, Turbo C++, Visual C++)

• Use of different high-level languages (C, C++, Pascal)

• Different host architectures (Intel 80x86, Alpha AXP).

The library of fault operators (code patterns + mutations)
depends essentially on the target architecture.

Henrique Madeira Research@FCTUC, Novembro 2006 28

Current use of G-SWFIT

• Dependability benchmarking
DBench-OLTP: database and OLTP systems

Already used to benchmark Oracle 8i, Oracle9i, and PostgreSQL running
on top of Windows 2K, Windows XP, and Linux.

WEB-DB: web servers
Already used to benchmark Apache and Abyss web servers running on top
of Windows 2K, Windows XP, and Windows 2003.

• Independent verification and validation in NASA IV&V
case-studies (project started on Feb. 2005).

	Iniciação à investigação científica�---�
	The research “business”�(my personal view)
	Background: COTS based software development
	Research problem
	Research problem
	Research starting idea
	Research problem� (focusing the problem)
	What is a software fault?�(narrowing the problem)
	Characterization of software faults� (using previous work from IBM)
	Types of software faults (ODC)
	Which are the most representative software faults?
	Open source field data survey
	Characterization of software faults through an additional step over ODC
	Fault characterization on top of ODC
	Fault distribution across ODC types
	Fault nature characterization across ODC
	Fault characterization across programs
	The most frequent software faults
	“Top-N” of software faults
	G-SWFIT�Generic software fault injection technique
	Fault/operator example 1�Missing and-expression in condition
	Fault/operator example 2:�Assignment instead equality comparison
	Definition of the�low-level mutation operators library
	Validation of the technique
	Example of results on accuracy validation:�Missing or bad return statement
	Example of results on accuracy validation:�Assignment instead equality comparison
	Generalization of the technique
	Current use of G-SWFIT

